Data: Czwartek, 11 sierpnia 2011, 17:34

Mikrofalowe splątanie


Fizycy z Narodowych Instytutów Standardów i Technologii (NIST) jako pierwsi w historii doprowadzili do splątania dwóch jonów za pomocą mikrofal. Dotychczas w tym celu wykorzystywano lasery.

Prace te pokazują, że w przyszłości możliwe będzie zastąpienie wielkich systemów laserowych niewielkimi źródłami mikrofal, takimi jak np. wykorzystywane w telefonach komórkowych.

Mikrofale już wcześniej były używane do manipulowania jonami, jednak teraz, dzięki umieszczeniu źródła ich emisji bardzo blisko jonów, w odległości zaledwie 30 mikrometrów, udało się uzyskać splątanie atomów. Możliwość splątywania cząsteczek to jeden z podstawowych warunków transportu informacji i korekcji błędów w przyszłych komputerach kwantowych.

Podczas swoich prac naukowcy wykorzystali źródło mikrofal umieszczone w układzie scalonym zintegrowane z pułapką jonową oraz stołowy zestaw laserów, luster i soczewek. Zestaw ten jest dziesięciokrotnie mniejszy niż dotychczas wykorzystywane. Użycie ultrafioletowego lasera o niskiej mocy wciąż jest koniecznością, gdyż za jego pomocą chłodzi się jony i obserwuje wyniki badań. Jednak w przyszłości cały zespół lasera można będzie zminiaturyzować do rozmiarów laserów używanych np. w odtwarzaczach DVD.

W czasie eksperymentów dwa jony zostały złapane w elektromagnetyczną pułapkę. Nad pułapką znajdował się układ scalony zawierający elektrody z azotku glinu pokrytego złotem. Elektrody były aktywowane, by wywołać impulsy promieniowania mikrofalowego oscylujące wokół jonów. Ich częstotliwość wahała się od 1 do 2 gigaherców. Mikrofale doprowadziły do powstania pola magnetycznego, które z kolei wywołało rotację spinów. Jeśli moc takiego pola magnetycznego jest w odpowiedni sposób zwiększana, można doprowadzić do splątania jonów. Metodą prób i błędów, wykorzystując przy tym zestaw trzech elektrod, udało się uczonym odnaleźć właściwy sposób manipulowania polem magnetycznym i doprowadzić do splątania.

Wykorzystanie mikrofal w miejsce laserów ma i tę zaletę, że zmniejsza liczbę błędów, które są powodowane niestabilnościami w promieniu lasera oraz zapobiega pojawieniu się w jonach spontanicznej emisji wywoływanej światłem laserowym. Jednak technika mikrofalowego splątania musi zostać jeszcze udoskonalona. Uczonym z NIST udało się uzyskać splątanie w 76% przypadków. Tymczasem za pomocą lasera uzyskuje się wynik rzędu 99,3 procenta.

Mariusz Błoński
| Drukuj | Zamknij |